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Motivation

Classical Technique: For AND-OR-NOT circuit for function ϕ on bit strings

� Build AND-NOT circuit firing on each bit-string with ϕ � 1

� Connect each such with an OR

Restatement:

� Produce a decomposition of the function ϕ

� Produce circuit blocks accordingly
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Motivation, Cont.

Quotation, Feynman on Computation,

�

2.4:

However, the approach described here is so simple and general
that it does not need an expert in logic to design it! Moreover, it is
also a standard type of layout that can easily be laid out in silicon.
(ibid.)

Remarks:

� Analog for quantum computers?

� Simple & general?
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Motivation, Cont.

� Quantum computation, n quantum bits: 2n

� 2n unitary matrix

� Matrix decomposition: Algorithm for factoring matrices

– Similar strategy: decomposition splits computation into parts

– Divide & conquer: produce circuit design for each factor
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Outline

I. Introduction to Quantum Circuits
II. Two Qubit Circuits (CD)

III. Circuits for Diagonal Unitaries
IV. Half CNOT per Entry (CSD)
V. Differntial Topology & Lower Bounds
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Quantum Computing

� replace bit with qubit: two state quantum system, states � 0 � , � 1 �

– Single qubit state space H1 � � � 0 ��� � � 1 ��� � � 2

– e.g. � ψ � � � 1 �
	 2 � � � 0 ��� i � 1 � � or � ψ � �

1 �	 2
i �	 2

– n-qubit state space Hn � 
 n
1H1 � � b̄ an n bit string � � b̄ �� � � 2n

– Kronecker (tensor) product � � entanglement
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Nonlocality: Entangled States

� von Neumann measurement: � ψ � � ∑N
j� 0 α j � j � , Prob � j meas � � � α j � 2 � ∑2n � 1

j� 0 � α j � 2

� Standard entangled state: � ψ � � � 1 � 	 2 � � � 00 � � � 11 � �

– Prob � 00 meas � � Prob � 11 meas � � 1 � 2

� Also � GHZ � � � 1 �	 2 � � � 00 � � � 0 ��� � 11 � � � 1 � � ,

�W � � � 1 �	 n � � � 100 � � � 0 ��� � 010 � � � 0 ��� � � �� � 0 � � � 01 � �

� quantum computations: apply unitary matrix u, i.e. � ψ ��� � u � ψ �
7



Tensor (Kronecker) Products
of Data, Computations

� � φ � � � 0 ��� i � 1 � , � ψ � � � 0 ��� � 1 ��� H1

– interpret � 10 � � � 1 � 
 � 0 � etc.

– composite state in H2: � φ � 
 � ψ � � � 00 � � � 01 ��� i � 10 ��� i � 11 �

� Most two-qubit states are not tensors of one-qubit states.

� If A �

α � β
β̄ ᾱ is one-qubit, B one-qubit, then the two-qubit tensor

A 
 B is � A 
 B � �

αB � βB
β̄B ᾱB

. Most 4 � 4 unitary u are not local.
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Complexity of Unitary Evolutions

� Easy to do: 
 n
j� 1u j for 2 � 2 factors,

Slightly tricky: two-qubit operation v 
 I2n

�

4, some 4 � 4 unitary v

� Optimization problem: Use as few such factors as possible

� Visual representation: Quantum circuit diagram

Thm: (’93, Bernstein-Vazirani) The Deutsch-Jozsa algorithm proves quan-
tum computers would violate the strong Church-Turing hypothesis.
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Complexity of Unitary Evolutions Cont.
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� Outlined box is Kronecker (tensor) product u1 
 u2 
 u3

� Common practice: not arbitrary v1, v2, v3 but CNOT, � 10 � � � � 11 �
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Quantum Circuit Design

� For � � � �� �

0 1
1 0

, sample quantum circuit:

u � ��

0 1 0 0
1 0 0 0
0 0 1 0
0 0 0 1

�� is implemented by 76540123 � 76540123

76540123

� good quantum circuit design: find tensor factors of computation u
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Example: F the Two-Qubit
Fourier Transform in � � 4 �

� Relabelling � 00 ���� � � � 11 � as � 0 ���� � � � � 3 � , the discrete Fourier transform F :

� j �

F

� � 1
2

3

∑
k� 0

�	 � 1 � jk � k � or F �

1
2

��

1 1 1 1
1 i � 1 � i
1 � 1 1 � 1
1 � i � 1 i

��

� one-qubit unitaries: H � � 1 � 	 2 �
1 1
1 � 1

, S � � 1 �	 2 �

1 0
0 i

F
H S � 76540123 �

�
�

� H 76540123 � 76540123
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Outline

I. Introduction to Quantum Circuits
II. Two Qubit Circuits (CD)

III. Circuits for Diagonal Unitaries
IV. Half CNOT per Entry (CSD)
V. Differntial Topology & Lower Bounds
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The Magic Basis of Two-Qubit State Space

� ���
� ���

�
��� � � � � � 00 � � � 11 � � �	 2

��� � � � � � 01 � � � 10 � � �	 2
��� � � � � i � 00 � � i � 11 � � �	 2

��� 	 � � � i � 01 � � i � 10 � � �	 2

Remark: Bell states up to global phase; global phases needed for theorem

Theorem (Lewenstein, Kraus, Horodecki, Cirac 2001)
Consider a 4 � 4 unitary u, global-phase chosen for det � u � � 1

� Compute matrix elements in the magic basis

� � All matrix elements are real ��
 � � u � a 
 b �
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Two-Qubit Canonical Decomposition

Two-Qubit Canonical Decomposition: Any u a four by four unitary admits a
matrix decomposition of the following form:

u � � d 
 f � a � b 
 c �

for b 
 c� d 
 f are tensors of one-qubit computations, a � ∑3
j� 0 eiθ j ��� � � � � � �

Note that a applies relative phases to the magic or Bell basis.

Circuit diagram: For any u a two-qubit computation, we have:

u

b

a

d

��

c f
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Application: Three CNOT
Universal Two-Qubit Circuit

� Many groups: 3 CNOT circuit for 4 � 4 unitary:
(F.Vatan, C.P.Williams), (G.Vidal, C.Dawson), (V.Shende, I.Markov, B-)

– Implement a somehow, commute SWAP through circuit to cancel

– Earlier B-,Markov: 4 CNOT circuit w/o SWAP, CD & naı̈ve a

u
B 76540123 Rz � 76540123 D

��

C � Ry 76540123 Ry � F
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Two-Qubit CNOT-Optimal Circuits

Theorem:(Shende,B-,Markov) Suppose v is a 4 � 4 unitary normalized so
det � v � � 1. Label γ � v � � �� iσy ��� 2v �� iσy ��� 2vT . Then any v admits a circuit
holding elements of SU � 2 � � 2 and 3 CNOT’s, up to global phase. Moreover,
for p � λ � � det � λI4� γ � v �� the characteristic poly of γ � v � :

� (v admits a circuit with 2 CNOT’s)
 � (p � λ � has real coefficients)

� (v admits a circuit with 1 CNOT)
 � (p � λ � � � λ� i � 2 � λ� i � 2)

� (v� SU � 2 � 
 SU � 2 � )
 � ( γ � v � � � I4 )
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Optimal Structured Two-qubit Circuits

B � Rx � D B � D

C 76540123 Rz 76540123 F C 76540123 F

� Quantum circuit identities: All 1� 2 CNOT diagrams reduce to these

� Computing parameters: useful to use operator E, E � j � � ��� � �

E
Rx � π � 2 � �

��

S 76540123 S†
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Outline

I. Introduction to Quantum Circuits
II. Two Qubit Circuits (CD)

III. Circuits for Diagonal Unitaries
IV. Half CNOT per Entry (CSD)
V. Differntial Topology & Lower Bounds

19



Relative Phase Group

� Easiest concievable n-qubit circuit question: How to build circuits for

A � 2n � �

2n � 1

∑
j� 0

eiθ j � j � � j � ; θ j� � ?

� A � 2n � commutative � � vector group

– log : A � 2n � � � � 2n � carries matrix multiplication to vector sum

– Strategy: build decompositions from vector space decompositions

– Subspaces encoded by characters, i.e. continuous group maps
χ : A � 2n � � � eit

�
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Characters Detecting Tensors

� ker logχ is a subspace of � � 2n �

� Subspaces � j ker logχ j exponentiate to closed subgroups

Example: a � ∑2n � 1
j� 0 z j � j � � j �� A � 2n � has a � ã 
 Rz � α � if and only if

z0 � z1 � z2 � z3 � � � � � z2n � 2 � z2n � 1

So a factors on the bottom line if and only if a� �

2n� 1 � 1
j� 0 ker χ j

for χ j � a � � z2 jz2 j � 2 � � z2 j � 1z2 j � 3 � .
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Circuits for A

�

2n

�

Outline of Synthesis for A � 2n � :

� Produce circuit blocks capable of setting all χ j � 1

� After a � ã 
 Rz, induct to ã on top n� 1 lines

Remark: 2n � 1� 1 characters to zero � � 2n � 1� 1 blocks, i.e. one for each
nonempty subset of the top n� 1 lines

XOR

�

1 � 3 �

� Rz �

� �

�
� � �

76540123 76540123 Rz 76540123 76540123

22



Circuits for A

�

2n

�

, Cont.

Tricks in Implementing Outline:

� If # � � S1 � S2 ��� � S1� S2 �� � 1, then all but one CNOT in center of
XORS1 � Rz � XORS2 � Rz � cancel.

� Subsets in Gray code: most CNOTs cancel

� Final count: 2n� 2 CNOTs

a

� � � � Rz

�
� � � Rz 76540123 Rz 76540123

Rz 76540123 Rz 76540123 Rz 76540123 Rz 76540123

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _�
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�

�

�
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�

�
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�

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
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Uniformly Controlled Rotations
(M.Möttönen, J.Vartiainen)

Let �v be any axis on Block sphere. Uniformly-controlled rotation requires
2n � 1 CNOTs:

uni

k

�R �v� � ��

R �v � θ0 � 02 � � � 02
02 R �v � θ1 � � � � 02
02 02

. . . 02
02 02 � � � R �v � θ2n� 1 � 1 �

��

R �v

Example: Outlined block is diag �Rz � θ1 � � Rz � θ2 �� � � � � Rz � θ2n� 1 �� � �

uni
n � 1 �Rz� up

to SWAP of qubits 1,n

Shende, q-ph/0406176: Short proof of 2n � 1 CNOTs using induction:

� � 2n � � I2 
 � � 2n � 1 � � σz 
 � � 2n � 1 �
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Outline

I. Introduction to Quantum Circuits
II. Two Qubit Circuits (CD)

III. Circuits for Diagonal Unitaries
IV. Half CNOT per Entry (CSD)
V. Differntial Topology & Lower Bounds
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Universal Circuits

Goal: Build a universal quantum circuit for u be 2n

� 2n unitary evolution

� Change rotation angles: any u up to phase

� Preview: At least 4n� 1 rotation boxes R �v, at least 1
4 � 4n� 3n� 1 � CNOTs

� Prior art

– Barenco Bennett Cleve DiVincenzo Margolus Shor Sleator J.Smolin
Weinfurter (1995) � 50n2

� 4n CNOTs

– Vartiainen, Möttönen, Bergholm, Salomaa, � 8 � 4n (2003),

� 4n (2004)

26



Cosine Sine Decomposition

Cosine Sine Decomposition: Any v a 2n

� 2n unitary may be written

v �

a1 0
0 b1

c � s
s c

a2 0
0 b2

� � a1� b1 � γ � a2� b2 �

where a j� b j are 2n � 1

� 2n � 1 unitary, c � ∑2n� 1 � 1
j� 0 cos t j � j � � j � and s � ∑2n� 1 � 1

j� 0 sin t j � j � � j �

� Studied extensively in numerical matrix analysis literature

� Fast CSD algorithms exist; reasonable on laptop for n � 10
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Strategy for � 4n

� 2 CNOT Circuit

� Use CSD for v � � a1� b1 � γ � c1� d1 �

� Implement γ �

c � s
s c

as uniformly controlled rotations

– uniform control � � few CNOTs

� Implement a j� b j �

a j 0
0 b j

as quantum multiplexor

– Also includes uniformly controlled rotations, also inductive

� Induction ends at specialty two-qubit circuit
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Quantum Multiplexors

� Multiplexor: route computation as control bit 0,1

� v � a� b: Do a or b as top qubit � 0 � , � 1 �

� Diagonalization trick: Solve following system, d� A � 2n � 1 � ,
u,w each some 2n � 1

� 2n � 1 unitary

a � udw
b � ud†w

� Result: a� b � � u� u � � d� d† � � w� w � � � I2 
 u � �

uni
n � 1 �Rz� � I2 
 w �
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Circuit for

�

1 � 2

�

CNOT per Entry

v

Rz Ry Rz
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� Outlined sections are multiplexor implementations

� Cosine Sine matrix γ: uniformly controlled �
uni
n � 1 �Ry�

� Induction ends w/ 2-qubit specialty circuit

30



Circuit Errata

� Lower bound � � (can be improved by no more than factor of 2)

� 21 CNOTs in 3 qubits: currently best known

� � 50% CNOTs on bottom two lines

– Adapts to spin-chain architecture with � 4� 5 � � 4n CNOTs

– Quantum charge couple device (QCCD) with 3 or 4 qubit chamber?
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Outline

I. Introduction to Quantum Circuits
II. Two Qubit Circuits (CD)

III. Circuits for Diagonal Unitaries
IV. Half CNOT per Entry (CSD)
V. Differntial Topology & Lower Bounds
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Sard’s Theorem

Def: A critical value of a smooth function of smooth manifolds f : M � N is
any n� N such that there is some p� M with f � p � � n with the linear map

� d f � p : TpM � TnN not onto.

Sard’s theorem: The set of critical values of any smooth map has
measure zero.

Corollary: If dim M � dim N, then image(f) is measure 0.

� U � 2n � �

� u� � 2n � 2n
; uu† � I2n � : smooth manifold

� Circuit topology τ with k one parameter rotation boxes induces smooth
evaluation map fτ : U � 1 � � �

k � U � 2n �
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Dimension-Based Bounds

� Consequence: Any universal circuit must contain 4n� 1 one parame-
ter rotation boxes

� No consolidation: Boxes separated by at least 1
4 � 4n� 3n� 1 � CNOTs

– v Bloch sphere rotation: v � RxRzRx or v � RzRxRz

– Diagrams below: consolidation if fewer CNOTs

Rz � � Rz � �

76540123

��

76540123 Rx 76540123

��
76540123 Rx
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On-going Work

� Subgroups H of unitary group U � 2n �

– More structure, smaller circuits?

– Symmetries encoded within subgroups H

– Native gate libraries?

� Special purpose circuits

– Backwards: quantum circuits for doing numerical linear algebra?

– Entanglement dynamics and circuit structure
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http://www.arxiv.org Coordinates

� Two-qubits: q-ph/0308045

� Diagonal circuits: q-ph/0303039

� Uniform control: q-ph/0404089

� � 1 � 2 � CNOT/entry: q-ph/0406176

� Circuit diagrams by Qcircuit.tex: q-ph/0406003
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